Power Over Ethernet Applications

Executive Summary
With everything from phones to men’s razors now able to receive power from data cabling, what is the best method to deliver that power? As the IEEE 802.3af standard is currently written, there are two methods of providing power to a PoE device. The PSE or power sourcing equipment (the equipment providing power) can be either mid-span or end-span. Based on the standard, there are some clear and distinct differences between the two. Highlights of the IEEE 802.3af PoE standard are as follows:
Power is provided over a data cabling channel

- Powering devices can be mid-span (injected power within channel) or end-span (power source is in the switch)
- Power delivered from end-span devices can be injected onto pairs transmitting data
- Power delivered from current standards-based mid-span devices typically inject power onto unused pairs.
- Power delivery capability:
 - 500mA absolute limit, peak allowable current 450mA with a 50mA safety margin (guardbands)
 - Port voltage of 44V – Maximum 48V
 - Most resistive allowable cable (20 ohms round trip)
 - Cable drops an additional 7V when maximum current is flowing and arrives at powered equipment as 37V
 - $37V \times 350mA = 12.95W$ (maximum power to a powered device (PD))
 - PSE (Power Source Equipment) must detect if attached device is standard or powered and drop power if not needed

In mid-span power, there will be a device between the switch and the end device. Typically, these mid-span devices introduce (inject) power to the end device on the 2 cable pairs that are not used for data, therefore requiring four pairs for operation. The advantage of mid-span devices is that network equipment does not have to be upgraded in order to utilize PoE.

The disadvantage of current standards based mid-span devices is that they require 2 unused pairs to deliver power. This means that these mid-span devices will not work in a legacy split pair configuration as all four pairs are required. In addition, these mid-span devices can only support data applications that operate over 2-pairs such as 10BASE-T and 100BASE-T. This bounds maximum data speed to 100 Mbps, which is a significantly limiting factor in today’s networks, where gigabit to the desktop and gigabit VoIP phones is becoming common. Most mid-span devices also require additional rack space and additional connections to a UPS as well as additional connections to the network for management capabilities. This introduces another location for troubleshooting in the event of a failure.

Powered patch panels are mid-span devices that operate within the patch panel. The advantage is lower rack space utilization. However should a device fail, re-termination would be required to move the cable to another powered port, adding the most costly portion of an installation - labor. Powered patch panels also require an additional connection to a UPS, a network connection if management is used, and re-termination of all ports should a higher power level be required at a future date resulting in higher upgrade costs due to
added labor. As devices that require power are added to the network, their connections would need to be re-terminated in the telecommunications room. This may not be suitable for end users that do not have staff with this expertise, as a cabling technician would need to be dispatched each time that power is needed. At present, powered patch panels would also require replacement or replacement of the power modules for gigabit operations if the standard is changed to allow for gigabit mid-span operations.

The other option for providing power to PoE end devices is an end-span device. In an end-span configuration, the switch provides the power with no intermediate device. Because end-span devices do not break into the channel, they are able to provide standards based power to gigabit and 10-gigabit devices as the power is delivered on data pairs. With the costs of chips steadily decreasing, the incremental costs for providing power in a switch is following suit. In addition, providing UPS backup power to the switch only, represents a cost savings compared to providing back-up power to both the switch and the mid-span device.

There are some distinct advantages to end-span power application. In addition to providing power to gigabit devices over the data pairs, newer devices are field upgradeable to increase delivered power. Power can also be managed and backed off if a device is consuming less power than the standard 12.95W delivery. This can provide savings in power consumption resulting in lower operating costs than devices that provide full power at all times. This option requires no additional rack space and no additional connections to the UPS, although the UPS and power back up systems need to be properly sized to handle the loads. There are no additional points of failure, and a simple patch cord change can move a device to either a powered or non-powered port.

Power over Ethernet Plus (IEEE 802.3at) is a new study group within IEEE. The goals are to determine if gigabit in a mid-span configuration will be recognized, as well as to increase the level of delivered power to allow devices that require up to 30W to be energized over the data cabling. This standard is 2-3 years from being finalized. At this point, there are several interested vendors and the standard will likely change several times before the publication date. This would, however, allow laptops, higher gain wireless access points, heavier pan-tilt-zoom IP cameras and other devices to utilize data cabling power.

Siemon recommends power delivery via end-span devices to ensure maximum system return-on-investment, compatibility with network application upgrades, and fewest points of failure. For users that want to provide power to some equipment, such as VoIP phones, and do not have field upgradeable switches or the budget to upgrade their switches, mid-span may provide an acceptable interim solution.

All of Siemon’s cabling systems are compatible with Power over Ethernet (PoE) in the published 802.3af standard. We are also working within IEEE to assure ensure that our cabling is compatible with the new Power over Ethernet Plus standard when it is finalized.
The Americas

Siemon – North America
101 Siemon Company Drive
Watertown, CT 06795-0400 USA
Tel: (1) 866 474 1197
Customer Service Direct:
Tel: (1) 866 548 5814
Fax: (1) 860 945 4225
info@siemon.com

Siemon – Brasil
Av. Dr. Chucri Zaidan, 920 - 9º
Andar - Sala 9 - Morumbi
Edificio Market Place - Torre I
04583-904 São Paulo/SP, Brasil
Tel: (55) 11 3048 4094
Fax: (55) 11 3048 4099
info_brasil@siemon.com

Siemon – Venezuela
Calle Veracrua,
Torre Orinoco Piso 2, Oficina 2-C
Las Mercedes
Caracas, Venezuela
Tel: (58) 212 992 5884
Fax: (58) 212 993 9138
info_venezuela@siemon.com

Siemon – CASA
Central & South America
Calle 77 No.11-19,
Oficina 601 Edificio Torre 77
Bogota, Colombia
Phone: +011-571-317-2121
Fax: +011-571-317-1163
info_andino@siemon.com

Siemon – Mexico
Blvd. Manual Avila Camacho
No. 2900-502
Fracc. Los Pirules, Tlalnepantla
Edo de Mexico, C.P. 54040 Mexico
Tel: (52) 5370 6100
Fax: (52) 5360 6300
info_mexico@siemon.com

Europe, Middle East, and Africa

Siemon – UK
36-48 Windsor Street
Chertsey, Surrey
KT16 BAX
Tel: (44) (0) 1932 571771
Fax: (44) (0) 1932 575070
info_uk@siemon.com

Siemon – Germany
Mainzer Landstrasse 16
60325 Frankfurt
Germany
Tel: (49) (0) 69 97168 184
Fax: (49) (0) 69 97168 304
info_deutsch@siemon.com

Siemon – France
Paris Axe France
ZAC Paris Rive Gauche
118-122 Avenue de France
75013 Paris, France
Tel: (33) 1 46 46 11 85
Fax: (33) 1 46 46 10 00
info_france@siemon.com

Siemon – Italy
Via Senigallia 18/2
20161 Milano
Italy
Tel: (39) 02 64 672 209
Fax: (39) 02 64 672 400
info_italia@siemon.com

Asia Pacific

Siemon – Australia (Sydney)
Unit 3A, 10 Rodborough Road
Frenchs Forest
NSW 2086
Sydney, Australia
Tel: (61) 2 8977 7500
Fax: (61) 2 8977 7501
info_asiapacific@siemon.com

Siemon – Australia (Melbourne)
Siemon - Australia (Melbourne)
Level 1, Suite 616
1 Queens Road
Melbourne VIC 3004
Melbourne, Australia
Tel: 03 9866 5277
Fax: 03 9866 5299
info_asiapacific@siemon.com

Siemon – Australia (Brisbane)
Unit 9, 128 Brookes Terraces
Fortitude Valley QLD 4006
Brisbane, Australia
Tel: (61) 07 3854 1200
Fax: (61) 07 3854 1077
info_asiapacific@siemon.com

Siemon – China (Guangzhou)
Rm. 1104,
Middle Tower, Times Square
28 Tianhebei Road
Guangzhou, 510620, P.R. China
Tel: (86) 20 3882 0055
Fax: (86) 20 3882 0575
info_china@siemon.com

Siemon – China (Shanghai)
Rm. 3407 - 3408,
Hong Kong Square S.
No. 283, Huai Hai Road
Shanghai, 200021, P.R. China
Tel: (86) 21 6390 6778
Fax: (86) 21 6384 0167
info_china@siemon.com

Siemon – China (Beijing)
Suite 1108 SCITECH Tower
22 Jianguomenwai Avenue
Beijing 100004, P.R. China
Tel: (86) 10 6539 8860
Fax: (86) 10 6539 8867
info_china@siemon.com

Siemon – Japan
10F Meguro G Bldg.
1-4-16 Meguro,
Meguro-ku, Tokyo, 153-0063 Japan
Tel: 81 (3) 5437-1580
Fax: 81 (3) 5437-1581
info_japan@siemon.com

© 2006 Siemon