Nuremberg, Germany
25.–27.2.2020

embedded world
Exhibition & Conference
...it’s a smarter world

CONFERENCE PROGRAM
www.embedded-world.eu

Organized by
design-elektronik.de

Conference Sponsors
Free Shipping on Orders Over €50 on $50 USD

800+ Industry-Leading Suppliers

1.6 Million+ Products in Stock

8.2 Million+ Products Online

Accept No Imitations

100% Franchised Distributor

Digi-Key Electronics

Telephone: 0800 180 01 25

DIGIKEY.DE

*A shipping charge of €18.00 will be billed on all orders of less than €50.00. A shipping charge of $22.00 USD will be billed on all orders of less than $60.00 USD. All orders are shipped via UPS, Federal Express, or DHL for delivery within 1-2 days (dependent on final destination). No handling fees. All prices are in euros or United States Dollar. Digi-Key is a franchised distributor for all supplier partners. New product added daily. Digi-Key and Digi-Key Electronics are registered trademarks of Digi-Key Electronics in the U.S. and other countries. © 2020 Digi-Key Electronics, 701 Brooks Ave., Suther, Thief River Falls, MN 56701, USA.
“Intelligence” is currently the dominating door opener for future applications in the tech industry. Artificial Intelligence (AI) and Machine Learning (ML) methods are already in use in many sectors of commerce, banks and IT companies. In the automotive industry, in health applications and other industrial sectors many problems can be addressed with artificial intelligence and machine learning, where the challenges are different: limited computing resources on site, no or only temporary network connections, very often power supply via batteries. But how to combine non-deterministic, dynamically learning software with functional safety and certification requirements?

Also, the other buzzword of recent years, “Internet of Things”, continues to be an important innovation driver. The IoT has by no means saturated and continues to evolve at a rapid pace. This is convincingly demonstrated by the development of wireless technologies such as Bluetooth v5.2, WiFi6, 5G and Low-Power Wide-Area “Zero-G” networks, like LoRaWAN, SIGFOX, or MIOTY. IoT technologies are now converging with AI and ML, making embedded systems even more complex. Therefore, “Connecting Embedded Intelligence” has been chosen as the motto of the embedded world Conference 2020. Embedded intelligent nodes are not only interconnected via machine-to-machine-communication, but they are also connected to physical applications to make up cyber-physical systems, and they interact with humans.

With a program of high-quality presentations, the embedded world Conference 2020 contributes to the ongoing challenges of “Connecting Embedded Intelligence”. The embedded world Conference once more adds to the success of the embedded systems industry that has now become an essential part of the technological future and, as such, is a precondition for our continued economic success.

The embedded world Conference 2020 is clearly structured along 10 subject areas, which are represented in different colors throughout the program: 1. Internet of Things, 2. Connected Systems, 3. Embedded OS, 4. Safety & Security, 5. Hardware Engineering, 6. Software & Systems Engineering, 7. Embedded Vision, 8. Autonomous & Intelligent Systems, 9. Embedded GUI & HMI, and 10. System-on-Chip. The solution-oriented presentations of each session follow a logical flow and address the most relevant questions in each sector. Discussions and an active exchange of ideas with the speakers as well with the conference participants are encouraged. The 30-minute presentations of the sessions are complemented by 14 classes, which provide comprehensive basic information on selected topics in the form of condensed training courses. You will find all 281 presentations and all 14 classes fully explained on the following pages of this booklet.

The steering board of the embedded world Conference 2020 wishes you and all participants stimulating discussions about new ideas and solutions enabling you to cope more easily and efficiently with the immense challenges that lie ahead. You are welcome to gain great insights in a pulsating atmosphere.
KEYNOTE-SPEAKER

Hassane El-Khoury, Cypress
Conference Keynote: How the IoT Will Drive the Convergence of Man and Machine
February, 25th, 1:30 PM | NCC Ost | Hall Sydney

The marriage of man and machine is the next wave of convergence. It may have a far greater impact on humanity than even the smartphone: it will transform the way we interact with the world. IoT technology, led by connectivity and cloud-based analytics, will effectively become an extension of our soul, driving applications where computers will eventually demonstrate emotional and social intelligence and make decisions for us.

The keynote will look at artificial intelligence, and discuss the advances in IoT technology – from purely analytical, to human-inspired, to humanized. The »converged« human-machine connection will affect leading applications in automotive, industrial, medical, smart city, and smart home.

Hassane El-Khoury is president, chief executive officer and a member of the board of directors at Cypress Semiconductor. He led Cypress’s Programmable Systems Division and formerly it’s automotive business unit.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SESSION 6.1 I: SW-Engineering I Languages & MISRA I</td>
<td>CLASS 6.1: The Bruce Schwab Class 1: Agile for Embedded Systems</td>
<td></td>
<td></td>
<td>SESSION 8.1: Intelligent Systems I AI Applications</td>
<td>SESSION 10.1: SoC I Supply Chain</td>
</tr>
<tr>
<td></td>
<td>SESSION 6.1 II: SW-Engineering II Languages & MISRA II</td>
<td></td>
<td></td>
<td>SESSION 8.2: Intelligent Systems II Autonomous Transportation</td>
<td>SESSION 10.2: SoC II Analog, RF & Mixed Signal</td>
</tr>
<tr>
<td></td>
<td>SESSION 6.3 II: SW-Engineering III Development Process II</td>
<td>CLASS 6.4: Safe Modern C++</td>
<td></td>
<td>SESSION 8.3 II: Intelligent Systems IV AI & ML Technologies II</td>
<td>SESSION 10.4 I: SoC IV System Technology I</td>
</tr>
<tr>
<td></td>
<td>CLASS 6.6: The Bruce Schwab Class 4: Embedded Vision</td>
<td></td>
<td></td>
<td>SESSION 9.1 II: Embedded HMI & GUI II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLASS 6.7 I: SW-Engineering VI Code Quality I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLASS 6.7 II: SW-Engineering VII Code Quality II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEERING BOARD

back row (from left to right): Dr. Bernd Hense, Prof. Dr. Axel Sikora, Dr. Klaus Grimm
front row: Joachim Kroll, Prof. Dr. Peter Fromm
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
<th>Organization/Company</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:30-10:00</td>
<td>Migration from Classical CAN to CAN FD</td>
<td>Reiner Zitzmann</td>
<td>CAN in Automation</td>
<td>How does an IoT RTOS Differ to a Traditional RTOS?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Andy Powers, Arm</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>Multi-Level CAN (FD) Security, Combining Available Technologies</td>
<td>Olaf Pfeiffer</td>
<td>Embedded Systems Academy</td>
<td>Top Misunderstandings About Functional Safety Reloaded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Christian Dirmeier, TÜV SÜD Rail</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>CANopen FD Devices Identification via New Layer Setting Services (LSS)</td>
<td>Yao Yao</td>
<td>CAN in Automation</td>
<td>Update on Maintenance of IEC 61508-3 for Safety Software</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michael Kindermann, Pepperl+Fuchs</td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>Single Pair Ethernet: the Key for Seamless IP-based Sensor2cloud</td>
<td>Dr. Karsten Walther</td>
<td>Perinet</td>
<td>Impact of the 3rd Edition of IEC 61508-1/-2 on Your Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stephan Aschenbrenner, exida</td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>Single Pair Ethernet Filter Design</td>
<td>Martin Lehnseder, Würth Elektronics eSos</td>
<td></td>
<td>Process Control Cybersecurity Gets Serious: IEC 61508 and IEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62443-4-1 in Tandem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Deepu Chandran, LDRA</td>
</tr>
<tr>
<td>12:30-13:30</td>
<td>Lunch Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30-14:30</td>
<td>Conference Keynote:</td>
<td>Hassane El-Khoury, CEO, Cypress</td>
<td></td>
<td>How the IoT Will Drive the Convergence of Man and Machine</td>
</tr>
<tr>
<td>14:30-15:00</td>
<td>Enabling TPM2.0 for Industrial and Automotive Applications with an Open</td>
<td>Florian Schreiner</td>
<td>Trusted Computing Group/Infineon</td>
<td>Enabling Real Time Industrial IoT Communication over TSN:</td>
</tr>
<tr>
<td></td>
<td>Source Software Stack</td>
<td></td>
<td></td>
<td>A Technological Study on Pushing TSN Performance Limit in Linux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Boon Leong Ong, Intel</td>
</tr>
<tr>
<td>15:00-15:30</td>
<td>Protection Technologies</td>
<td>Guenther Fischer</td>
<td>Trusted Computing Group/Wibu-Systems</td>
<td>Connecting Microcontrollers to the Cloud Using MQTT, Bluetooth LE,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and HTTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tammyo Sen, Amazon Web Services</td>
</tr>
<tr>
<td>15:30-16:00</td>
<td>Increasing Resilience of Connected Systems with Secure Flash</td>
<td>Stephan Rosner</td>
<td>Trusted Computing Group/Cypress</td>
<td>Android Automotive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Karim Yaghmour, Opersys</td>
</tr>
<tr>
<td>16:00-16:30</td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30-17:00</td>
<td>MARS – Trusted Computing for Low-End Devices</td>
<td>Tom Brostrom</td>
<td>Trusted Computing Group/Cyber Pack Ventures</td>
<td>Performance Impact of Security for Real-time Fieldbus Traffic in a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TSN Network</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pekka Varis, Texas Instruments</td>
</tr>
<tr>
<td>17:00-17:30</td>
<td>A Scalable and Effective Design Approach in Enabling TSN for RTOS:</td>
<td>Wilson Kweh</td>
<td>Intel Microelectronics</td>
<td>Progress on the AUTOSAR Adaptive Platform for Intelligent Vehicles</td>
</tr>
<tr>
<td></td>
<td>A Case in Enabling TSN on Zephyr RTOS for Intel 2020 SoC</td>
<td></td>
<td></td>
<td>Rinat Asmus, BMW Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30-18:00</td>
<td>Time Synchronization through Time GPIO</td>
<td>Vikram Dadwal</td>
<td>Intel</td>
<td>Flight Safety Certification Implications for Complex Multi-Core</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Processor based Avionics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jyotika Athavale, Intel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>www.embedded-world.eu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Session 5.1: Hardware I – Memory

Wear Estimation for Devices with NAND Flash Memory
Marcel Ziswiler, Toradex

Anticipating Data Reliability in Managed NAND Systems
Justin Hunter, Micron

How to Avoid End of Life from NAND Correctable Errors
Thom Denholm, Datalight

Session 6.1 I: SW-Engineering I – Languages & MISRA I

C – The Language of Embedded
Colin Walls, Mentor, a Siemens Business

Introducing Rust from a C Programmer’s Perspective
Niall Cooling, Feabhas

Safety-Critical Software Development in C++
Dr. Daniel Kästner, Absint Angewandte Informatik

Session 8.1: Intelligent Systems I – AI Applications

Voice Enabled IoT Devices, Everywhere
Brian Clinton, Arm

Visual Focus Capturing for Ambient Assisted Living
Belmin Alic, Fraunhofer IMS

Design and Verification of Algorithms for Object Detection and Tracking Using Lidar Data
Marco Roggero, The MathWorks

Session 10.1: SoC – Supply Chain

FAKE! The Counterfeit Microchips Industry in China – How it Works, and How to Fight it
Michael Randt, Jonas Proeger, Trinamic Motion Control

A More Secure Silicon Supply Chain
Neeraj Paliwal, Rambus

Going the Extra Mile – Silicon Foundries Committing to Long Term Reliability for Embedded Processors
Diego Buitrago, Intel

Session 10.2: SoC II – Analog, RF & Mixed Signal

Ease Design Success in mm Analog Using Generators
Benjamin Prautsch, Fraunhofer IIS/EAS

Analog Computer on a Chip – Compiling Solutions
John Milios, Sendyne

Session 25.2: Functional Safety

62443-4-1 in Tandem
Stephan Aschenbrenner, TÜV SÜD Rail

61508-1/-2 on Your Development Update
Christian Dirmeier, TÜV SÜD Rail

On Maintenance of IEC 61508
Mark Richardson, LDRA

Conference Keynote:

How the IoT Will Drive the Convergence of Man and Machine
Hassane El-Khoury, CEO, Cypress

Session 6.1 II: SW-Engineering II – Languages & MISRA II

Undecidable Rules and How to Live with Them
Dr. Daniel Kästner, Absint Angewandte Informatik

BARR-C.2018 and MISRA C:2012: Synergy Between the Two Most Widely Used C Coding Standards
Prof. Dr. Roberto Bagnara, BUGSENG / University of Parma

Integration of AUTOSAR C++ Coding Guidelines into MISRA C++
Dr. Frank van den Beuken, Perforce Software

Session 8.2: Intelligent Systems II – Autonomous Transportation

Implementing AI for Automated Vehicles
Prof. Dr. Ralf Herrtwich, NVIDIA

Design Considerations in an Autonomous Drive Vehicle
Rod Watt, ARM

Creation and Automatic Variation of Traffic Scenarios for Virtual Validation of Automated Driving Systems
Marco Roggero, The MathWorks

Session 10.3: SoC III – Tools & Verification

Impact of RISC-V Adaptability on SoC Verification Methods
Simon Davidmann, Imperas Software

Verification of RISC-V SoC Designs Using Formal Methods
Sven Beyer, OneSpin Solutions

Embedded Co-debugging Made Easy with Intuitive Instrumented SoC FPGA
Rajashekar Reddy Merugu, Microchip Technology

Lunch Break

Want more? See page 12/13 for additional classes!
<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1.2: Internet of Things II – Platforms</th>
<th>Session 2.3 I: Connectivity III – Bluetooth I</th>
<th>Session 3.2 I: Embedded OS III – Linux I</th>
<th>Session 4.3 I: Functional Safety & Security III – Hardware Security I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan Rodig, Artak Avetyan, AREG SDK</td>
<td>Simon Slupik, Silvair</td>
<td>Robert Berger, Reliable Embedded Systems</td>
<td>Marius Munder, Silicon Labs</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>Ultra-small PLCs Enable Intelligence at the Edge</td>
<td>Design Considerations for Bluetooth Mesh Across Industrial and Home Environments</td>
<td>Debian or Yocto? Which is the best for your Embedded Linux Project?</td>
<td>Improving IoT Security from Root to Cloud – PSA Certified at 1 Year</td>
</tr>
<tr>
<td></td>
<td>Jeff DeAngelis, Maxim Integrated</td>
<td>Brian Bedrosian, Cypress Semiconductor</td>
<td>Chris Simmonds, 2net</td>
<td>Robert Coombs, ARM</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>How to Rapidly Develop IoT Devices with Arm and AWS</td>
<td>Combining Bluetooth Mesh and KNX: The Best of Both Worlds</td>
<td>Embedded Software Development CI/CD on Ubuntu</td>
<td>Secure Flash – The Cure for Insecurity in Connected Automotive and Industrial Applications</td>
</tr>
<tr>
<td></td>
<td>Reinhard Keil, Arm</td>
<td>Mario Noseda, ZHAW Institute of Embedded Systems</td>
<td>Taiten Peng, Canonical</td>
<td>Sandeep Krishnegowda, Cypress Semiconductor</td>
</tr>
<tr>
<td>11:00-11:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-12:00</td>
<td></td>
<td>Understanding Bluetooth Range</td>
<td>Why TSN won’t Work without Real-time Linux</td>
<td>Securing the Bluetooth Low Energy (BLE) Physical Layer with Round Trip Time of Flight Measurements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bjørn Kvaale, Nordic</td>
<td>Kurt Kanzenbach, Linutronix</td>
<td>Evan Wakefield, Sean Lyons, Texas Instruments</td>
</tr>
<tr>
<td>12:00-12:30</td>
<td></td>
<td></td>
<td>Linux Kernel Debugging: Going Beyond Prinkt Messages</td>
<td>Evaluation of Public Key Certificate Enrolment in Resource Constraint Embedded Field Devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sergio Prado, Embedded Labworks</td>
<td>Joseena M. Jose, Hochschule Offenburg</td>
</tr>
<tr>
<td></td>
<td>Thierry Bieber, HMS Industrial Networks</td>
<td>Pal Kastnes, Nordic</td>
<td>Kate Stewart, Linux Foundation</td>
<td>Larry Lapides, Imperas Software</td>
</tr>
<tr>
<td>13:00-14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00-14:30</td>
<td>Session 1.3: Internet of Things III – Data Management, Edge, Fog, Cloud</td>
<td>Session 2.3 II: Connectivity IV – Bluetooth II</td>
<td>Session 3.2 II: Embedded OS IV – Linux II</td>
<td>Session 4.2 II: Functional Safety & Security IV – Hardware Security II</td>
</tr>
<tr>
<td></td>
<td>Cybersecurity Clouds Over the Bright Future of Smart Grids</td>
<td>New Ways of Testing of Bluetooth LE from R&D to Production</td>
<td>Deploying and Running Containers on Embedded Devices with FullMetalUpdate</td>
<td>Security is Not Free: Understanding the Hidden Costs of Securing Connected Devices</td>
</tr>
<tr>
<td></td>
<td>Mark Pitchford, LDRA</td>
<td>Joerg Koeppe, Rohde & Schwarz</td>
<td>Cedric Vincent, Witekia</td>
<td>Brent Wilson, Silicon Labs</td>
</tr>
<tr>
<td>14:30-15:00</td>
<td>Staying Smart: Open Source’s Role in Smart City Evolution</td>
<td>Previewing the Next Generation of Bluetooth Audio</td>
<td>Advantages of Heterogeneous SoCs in IoT Applications</td>
<td>Application of TFM2.0 in industrial and Automotive Systems Using the Feature API of the Open Source Software Stack</td>
</tr>
<tr>
<td></td>
<td>Yoshitake Kobayashi, Toshiba; Urs Gleim, Siemens</td>
<td>Nick Hunn, Wifore</td>
<td>Robert Goellner, DH electronics</td>
<td>Dr. Florian Schreiner, Infineon Technologies</td>
</tr>
<tr>
<td></td>
<td>Oskar Kaplun, CAN in Automation (CIA)</td>
<td>David Lara, Texas Instruments</td>
<td>Boris Brezillon, Collabora</td>
<td>Joseph Yiu, Arm</td>
</tr>
<tr>
<td>15:30-16:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00-16:30</td>
<td>Leverage the Security and Resiliency of the Cloud and IoT for Industrial Use Cases</td>
<td>Bluetooth Location Services and High Accuracy Direction Finding</td>
<td>Using Cgroups in Container Technology for a Fine Grain Control of System Resources</td>
<td>Out of the Box: Addressing Security with the MCU Based Amazon Voice Services Solution</td>
</tr>
<tr>
<td></td>
<td>Anton Shimagin, Amazon Web Services</td>
<td>Martin Woolley, Bluetooth SIG</td>
<td>Saurabh Arora, Elektrobit Automotive</td>
<td>Donnie Garcia, NXP Semiconductors</td>
</tr>
<tr>
<td>16:30-17:00</td>
<td>Real Predictive Maintenance in Three Practical Steps</td>
<td>Bluetooth Indoor Direction Finding</td>
<td>How Did Automotive Grade Linux Become THE Open Source Community Cars?</td>
<td>Analysis of Firmware Protection in State-of-the-Art Microcontrollers</td>
</tr>
<tr>
<td></td>
<td>Richard Elberger, Amazon Web Services</td>
<td>Brings a New Dimension to Indoor Asset Tracking</td>
<td>Walt Miner, The Linux Foundation</td>
<td>Johannes Obermaier, Marc Schink, Fraunhofer AiS²C</td>
</tr>
<tr>
<td>17:00-17:30</td>
<td>Bridging the Gap Between Cloud Computing and Edge Devices</td>
<td>Low Latency Deterministic Bluetooth Communication for Industrial Control – Is it Possible?</td>
<td>A Clean Slate Approach to Embedded Linux Security: RISC-V Enclaves</td>
<td>Improved FPGA-security by Partial Reconfiguration</td>
</tr>
<tr>
<td></td>
<td>Bruno Rouchouse, Wind River</td>
<td>Pelle Svensson, u-blox</td>
<td>Cesare Garlatti, Hex Five Security / RISC-V Foundation</td>
<td>Alexander Krutwig, Mixed Mode</td>
</tr>
</tbody>
</table>

Coffee Break
Coffee Break

Session 5.2: Hardware II – Power & Data
Enabling IoT Growth with Energy Harvesting Wireless Sensor Technology
Greg Rice, ON Semiconductor
Powering Sigfox Nodes with Harvested Energy
Prof. Dr. Marcel Meli, ZHAW InES
Analysis, Design and Optimization of a Combined Wireless Power Transfer and Near Field Communication System
Christian Merz, Würt Elektronik eSos

Session 6.3 I: SW-Engineering III – Development Process I
Engineering Smart Ecosystems: Challenges and Solutions
Prof. Dr.-Ing. Peter Ligggesmeyer, Fraunhofer-Institut für Experimentelles Software Engineering ISE
How Agile is Changing the Face of Embedded Software Development
Niall Cooling, Feabhas
Efficient Implementation of A-SPICE in Non-Automotive Company
Paulina Swistun, Diehl Ako Stiftung

Session 6.4 I: SW-Engineering IV – Testing & Debugging I
Actionable Ideas for Improving Software Quality
Jeffrey Fortin, Vector Informatik
Self-testing in Embedded Systems
Colin Walls, Mentor, a Siemens Business
Fully Automated Self-test and Calibration for Hardware in the Loop Test Systems
Dr. Kristian Trenkel, 6st Intelligente Systeme

Session 8.3 I: Intelligent Systems III – AI & ML Technologies I
Machine Learning Building Blocks for Industrial Applications
Prof. Robert Oshana, NXP Semiconductors
Accelerating ML Compute for IoT/Embedded Market
Tanuj Arora, Arm
Deep Learning Inference on the MPPA3 Manycore Processor
Dr. Benoît Dupont de Dinechin, Kailay

Session 10.4 I: SoC IV – System Technology I
IP Authoring for Re-Usability in SoC-based Designs and Derivative Products
Jeffrey Markham, Clossoft
Safety and Security Considerations for SoC Development
Samuel Fuller, NXP Semiconductors
Adding Differentiating Value, Reduce Implementation Time – A Fast Track for Integration of New Protocols/Standards
Ralph Grundler, Synopsys

Coffee Break

Session 5.3: Hardware III – Power Supply
USB Type-C, A New Power Paradigm
George Slama, Würt Elektronik eSos
Microcontroller Supplies Made Easy
Thomas Eichstetter, Essentielle Elektronik Eichstetter
Beyond the Data Sheet: Calculating Battery Life for Wireless IoT Devices
Matt Maupin, Silicon Labs

Session 6.3 II: SW-Engineering III – Development Process II
Perceived Problems of Formal Methods and how to Tackle Them
Henk Katerberg, Verum Software Tools
Safe Critical Application Development for Multicore Platform with ANSYS SCADE
Xavier Fornari, ANSYS
Safety- and Security-critical Embedded Software Development Within DevOps
Steve Howard, Perforce Software

Session 6.4 II: SW-Engineering IV – Testing & Debugging II
Non-intrusive Software Coverage Estimation for Safety-Critical System Certification
Martin Heininger, HEICON - Global Engineering
Can Free Tests Tool the Security of a Small Embedded System?
Dr. David Long, Doulos
Using Advanced Code Analysis for Boosting Unit Test Creation
Miroslaw Zielinski, Parasoft

Session 8.3 II: Intelligent Systems III – AI & ML Technologies II
Architecture Apocalypse: Dream Architecture for Deep Learning Inference and Compute -VERSAL AI Core
Prof. Alok Gupta, Xilinx
Designing Machine Learning Solutions for AI Based Embedded Systems
Neelaaksh Shigihall, Pradeep Bardia, Cadence Design Systems
Low-bit CNN Implementation and Optimization on FPGA
Dr. Yi Shan, Xilinx

Session 10.4 II: SoC V – System Technology II
From Design to Runtime: A Practical Approach to Reconfiguration
Mike Looijmans, Topic Products
RISC-V Hardware and Software Technology for Industry
Prof. Robert Oshana, NXP Semiconductors
Rick O’Connor, Open HWGroup
An Enclave-based TEE for SE-in-SoC in RISC-V Industry
Vincent Cui, Alibaba Group; Xuanele Ren, T-HEAD Semiconductor

Coffee Break

Vergleich von WiPo Eval-Boards von SW bis 20W
Robin Zwetzig, HFU Hochschule Furtwangen University & WEKA Fachmedien
Overcoming “Dirty-Power” Challenges Through Suitable Protection Schemes
Madhu Rayabahari, Semtech
Surviving Automotive Power Transients
George Slama, Würt Elektronik eSos

Guidelines, Tips and Tricks for Managing Open Source Software for Embedded Systems
Prof. Robert Oshana, NXP Semiconductors
A Hierarchical State Machine (HFSM) Realization with Polymorphism and Inheritance
Mustafa Eral, Aselsan
Dynamic Memory Allocation & Fragmentation in C & C++
Colin Walls, Mentor, a Siemens Business

Debugging Complex Failures of Real-Time Multi-Core Systems
Albert Schulz, Accem技術
Leveraging an Agnostic Approach to Debugging in Multicore Environments
Dr. Shawn Pretridge, IAR Systems
Usage of Debugger in Hardware in the Loop Tests
Dr. Kristian Trenkel, 6st Intelligente Systeme

From Data to Insight – with End to End AI Solutions
Stephan Gillichs, Intel Deutschland
AI on Microcontrollers
Raphael Zingg, ZHAW Institute of Embedded Systems

Emerging SoC Performance/Power Challenges and a Dozen Techniques
Jerry Wong, Xilinx
Blending DSP and ML Features Into a Low Power General Purpose Processor – How Far Can We Go?
Joseph Yiu, Arm
Improving Interface Adoption and Advancement with Programmable Devices
Grant Jennings, GOWIN Semiconductor

Want more? See page 12/13 for additional classes!
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>09:30-10:00</td>
<td>5G is Here and Now – Bringing the Dream of Autonomous Driving a Step Closer to Reality</td>
<td>Juggling Multiple IoT Protocols</td>
<td>Impacts of Increased Software Diversity on Embedded Systems</td>
<td>The Death of End-to-end Encryption and Personal Privacy</td>
</tr>
<tr>
<td></td>
<td>Martin Mausser, Qualcomm</td>
<td>Marius Munder, Silicon Labs</td>
<td>Maarten Koning, Wind River</td>
<td>Kris Chaplin, Intel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>Technical Principles and Simulations of the New 5G Radio Standard</td>
<td>IEEE 802.11AX for IoT</td>
<td>Ban: A Modern Lightweight Embedded Hypervisor</td>
<td>Our Critical Cyber Infrastructure is Under Attack: How We Can Protect it</td>
</tr>
<tr>
<td></td>
<td>Marco Roggero, The MathWorks</td>
<td>Shewan Yitayew, Imagination Technologies</td>
<td>Jose Martins, University of Minho</td>
<td>with a Cloud-to-Flash Approach</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yoni Kahana, Nanolock security</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>Evaluation of Private LTE Networks for IoT Applications</td>
<td>IoT On-Demand: How NFC helps to Control & Connect Sensors to the Cloud</td>
<td>Xen on Arm: Real-Time Virtualization with Cache Coloring</td>
<td>Understanding DPA Threads and Counter-Measures to Safeguard IoT Devices</td>
</tr>
<tr>
<td></td>
<td>Ritu Sethi, Intel</td>
<td>without the Need of an MCU</td>
<td>Prof. Dr. Giulio Corradi, Xiilinx</td>
<td>Marius Munder, Silicon Labs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mubeen Abbas, NXP Semiconductors Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>The Role of 5G in Industry 4.0</td>
<td>DECT: Wireless for Professional Requirements</td>
<td>Design Considerations of Embedded Hypervisor for Safety Applications</td>
<td>Defeating Superman – Protecting Code Against Fault Attacks</td>
</tr>
<tr>
<td></td>
<td>Ludger Boeggering, u-blox</td>
<td>Daniel Hartnett, DECT Forum</td>
<td>Leo Hendrawan, BlackBerry QNX</td>
<td>Dr. Colin O’Flynn, NewAE Technology</td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>Protect the Worldwide IoT with iSIM IP & Managed Services</td>
<td>Li-Fi TSN Node for Industrial Real-time Communications</td>
<td>Utilizing OpenAMP in a Mixed Safety-Critical System</td>
<td>Efficient and Secure Implementation of Post-Quantum Cryptography</td>
</tr>
<tr>
<td></td>
<td>Dana Neustadtter, Synopsys</td>
<td>Dr. Michael Faulwasser, Fraunhofer Institut für Photonische Mikrosysteme</td>
<td>Jeffrey Hancock, Mentor, A Siemens Business</td>
<td>Dr. Thomas Poepelmann, Infineon Technologies</td>
</tr>
<tr>
<td>12:30-13:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lunch Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30-14:00</td>
<td>Conference Sponsors</td>
<td>5G and LPWAN Fight or Team-up?</td>
<td>Comparing Debugging Strategies for Complex Embedded Systems</td>
<td>IoT Device and Data Security for uSoC FPGAs at the Edge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Hakim Jaafer, STMicroweoelectronics</td>
<td>Dr. Carmelo Loliacono, Green Hills Software</td>
<td>Grant Jennings, GOWIN Semiconductor</td>
</tr>
<tr>
<td>14:00-14:30</td>
<td>LoRa Cloud Enables Geolocation, Device and Application Services for LoRAWAN Networks</td>
<td>Multicore-Debugging with Virtualization-Awareness</td>
<td>Cognitive Platform for Industrial IoT System Security, Safety and Privacy</td>
<td>Konstantinos Loupos, INLECOM</td>
</tr>
<tr>
<td></td>
<td>Pedro Pachuca, Semtech</td>
<td>Frank Erdrich, emtion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30-15:00</td>
<td>Maintenance-free MIOTY LPWAN Enabled by Energy Harvesting</td>
<td>Multi Zone Security for Cortex-M Devices</td>
<td>Workshop on Flexible IoT Device Security</td>
<td>Nicolas Ponsini, Oracle</td>
</tr>
<tr>
<td></td>
<td>Ferdinand Kemeth, Fraunhofer Institute for Integrated Circuits IIS</td>
<td>Cesare Garlati, prpl Foundation / RISC-V Foundation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00-15:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30-16:00</td>
<td>A Threat and Risk Analysis Methodology for LoRa-based IoT Systems</td>
<td>Open Sourcing Safety Certification: The Xen Project’s Journey within the</td>
<td>Privacy & Security Implications for IoT Platforms in Large Scale Utility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Dana Fabiana Andreescu, Internet of Trust</td>
<td>Auto Industry and Beyond</td>
<td>Deployment</td>
<td>Mohit Kedia, Arm</td>
</tr>
<tr>
<td>16:00-16:30</td>
<td></td>
<td>SPURV: Running Android on Wayland</td>
<td>Challenges of Tomorrow’s Data Storage Integrity in Automotive and IOT</td>
<td>Bernd Niedermeier, Tuxera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guy Lunardi, Collabora</td>
<td>Projects</td>
<td></td>
</tr>
</tbody>
</table>
Session 5.4: Hardware IV – Applications
Case Study: Embedded RISC-V for Storage
Ted Marema, Western Digital

Low Voltage Motor Control System Design for Mobile and Wireless IoT Devices – How to Operate a Stepper or DC Motor From a Low Voltage Power Supply
Bernhard Dwerssteg, Trinamic Motion Control

Capacitive ECG Monitoring for Wearables and Smart Clothes
Daniel Laqua, Technische Universität Ilmenau

Coffee Break

Session 5.5: Hardware V – Architectures
N-Blocks – A modular Low Power Embedded Systems Platform
Prof. Dr. Dirk Pesch, University College Cork

Software Performance Engineering for Embedded Systems
Prof. Robert Oshana, NXP Semiconductors

Predictive Maintenance Using Structure-borne Noise Analysis
Daniel Krüger, SYS TEC electronic

Lunch Break

Session 5.6: SW-Engineering VI – Code Quality I
Compiler Optimisations for the Smallest, Fastest Code
Greg Davis, Green Hills Software

Increasing Software Architecture Model quality Using Automated Checks
Dr. Andreas Gaiser, Axivion

Hack Proofing Your C/C++ Code
Greg Davis, Green Hills Software

Coffee Break

Session 5.7: SW-Engineering VII – Code Quality II
Steps to Improve Code Quality for Safer Embedded Systems
Marcus Nissemark, Green Hills Software

How to Prove that Your C/C++ Code is Safe and Secure
Christian Guss, The MathWorks

Using AI to Prioritize Static Analysis Findings
Leonid Borodaev, Parasoft

Session 6.1: Embedded Vision I
Application Case Study: Autonomous Optical Inspection for Anomaly Detection
Lowry Snow, Amazon Web Services

Adding Machine Learning Based Image Processing to Your IoT Product; Real Time Edge Processing on the ConnectCore 8X
Greg Lytle, Au-Zone

Why Choosing the Right Machine Vision Software for an Embedded Vision Product is not a No-brainer
Christoph Wagner, MVTec Software

Session 6.2: Embedded Vision II
Simplified Edge Computing and Computer Vision with OpenVINO
Osuwotobi Oyinlola, Intel

MIPI Cameras: New Standard for Embedded Vision
Jan-Erik Schmitt, Vision Components

Direct Data Exchange Between FPGAs and GPUs Using GPUDirect
Philipp Huber, ZHAW Institute of Embedded Systems

Session 9.1 I: Embedded HMI & GUI I
Embedded HMI Design and Development: Learnings from a Decades’ Experience of Designing and Implementing Industrial HMI Products
Henrik Goul, Mjaler Informatics

Making the Cockpit of the Future a Reality – Via Optimized Human Machine Interfaces
Vincent Rossignol, Lionel Bennes, ANSYS

Scalable Safe HMI System Architectures
Mark Beilam, Arm

Program is subject to change (as at 05.12.2019)

Want more? See page 12/13 for additional classes!
TUESDAY | FEBRUARY 25 2020

| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.1: How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
|---|---|---|---|
| 14:30-18:00 | How to Build & Secure a RISC-V Embedded System
Cesare Garlati, Hex Five Security / RISC-V Foundation
Prof. Dr. Sandro Pinto, University of Minho
How to Build Hardware-enforced Software defined Separation in Cortex-M Devices
Cesare Garlati, Hex Five Security / RISC-V Foundation |
| 09:30-12:30 | Class 3.1: The Robert Berger Class: Embedded Linux – a Crash Course
Robert Berger, Reliable Embedded Systems | Class 5.2: Ultra Low Power Hands-on Workshop
Herman Roebbers, Altran |
Classes:

embedded world Conference 2020 – Connecting Embedded Intelligence

Classes:

In the embedded world Classes, reputed experts speak on special topics for half a day or a full day. This format is aimed primarily at participants who want to familiarize themselves thoroughly and efficiently with a specific topic. Straightforward and concise dialogues with the experts help to answer many questions and are an excellent opportunity of quickly expanding your current expertise. The classes aim at maximum learning goals.

With these equally compact and concentrated classes, the embedded world Conference covers a broad range of substantial aspects of embedded systems in detail to offer developers competent technical groundwork.

Be sure to register now!
“The embedded world Conference provides an excellent opportunity for engineers to come together to experience high quality technical content over three days. Personally, I enjoy speaking at the conference and the technical interactions with like-minded developers.”

Greg Davis, Director of Engineering, Compilers at Green Hills Software

“The embedded world Conference and exhibition is a unique event in the embedded systems industry because of the mix of excellent technical content in the conference and the right attendees and exhibitors in the exhibition. For learning about the latest in embedded technology, to meeting with partners and customers, Embedded World has provided great value for me personally and for Imperas Software.”

Larry Lapides, VP Sales, Imperas Software Ltd.

“For me, the embedded world Conference is Europes leading communication platform to engage with developers and decision makers. Every year, Arm participates at the conference track with our best experts on topics that should soon be significant for the embedded industry. I really enjoy the interaction with our users that provide us with their feedback. This makes embedded world special and my personal key event every year!”

Reinhard Keil, Arm Germany

“For high-tech professionals who want to stay ahead of the innovation curve, The Embedded World Conference offers a unique mix of well curated topics from industry and research. Year after year I return to the Conference to learn about technology trends and to connect with industry peers. What sets the Conference apart is the quality of the speakers, the relevance of the subjects, and the truly non-commercial content of the sessions. See you in Nuremberg in February 2020!”

Cesare Garlati, Founder Hex Five Security, California, USA
Upcoming Events:

Automotive Ethernet Congress
12-13 February 2020, Munich
www.automotive-ethernet-congress.de

TSN/A Conference – Technology & Applications
7-8 October 2020, Frankfurt
www.tsnaconference.de

Wireless Congress: Systems & Applications
11-12 November 2020, Munich
www.wireless-congress.de

We make your work easier – and your display smarter

Easier, faster and more profitable, with warranty for the total solution and worldwide technical support, all from just one supplier. Including the software implementation, if you want it, and full factory module testing, so an entire extensive package

- **USB » Power over Ethernet(POE) » Blue Tooth » Wireless » GUI**
- **TouchGFX**
- Customization
- Integration Service & One Stop Shopping
- Strong software partnership
- Product Longevity Support
- Proven and optimized Supply Chain
- Reduced Total Cost of Ownership

Visit us in Hall 1 - 269

EMERGING DISPLAY TECHNOLOGIES CORP.
www.edtc.com
At embedded world, trade fairs and conferences complement each other perfectly. New technologies and ideas will be presented at the conference, and visitors can experience how current innovations are transformed into products at the trade fair.

The keynote is always a highlight of the embedded world Conference. In 2019 Jean-Marc Chery, CEO of ST Microelectronics, was guest speaker.

In the classes, the participants immerse themselves deeply in a technical topic. Many of the classes are hands-on workshops in which the trainer gives a live demonstration or the participants themselves take action.

WEKA’s stand is as busy as a beehive: Developers, Partners and Executives meet and greet and are being interviewed.
EMBEDDED WORLD – A BUSTLING PLACE TO MEET

First-class professional knowledge for display experts

From 26 to 27 February 2020, engineers, developers, project leaders, managers, scientists and users of electronic displays will once again be able to learn about the latest display technologies.

Session Topics:
- Display Trends & Technologies
- Touch Technologies
- (Automotive) Interface Technologies
- Display Technologies & Applications
- (Automotive) GUI/HMI
- Head-Up Displays
- Display Glass & Measurements
- Local Dimming for Automotive LCDs
- AR/VR: Techniques & Applications
- Gestures & HMI
- Automotive Displays & Touch Integration
- HDR Measurements
- Rough Display Applications
- LCDs & Haptic Feedback
- Micro-LEDs
- Display Measurements
- Display Improvements

www.electronic-displays.de

In 2019 the embedded world Conference and electronic displays Conference enjoyed 1,991 participants and speakers from 52 countries, and impressed the experts with their first-class, high-quality professional programmes.

Now in its 17th year, embedded world has once again impressively demonstrated that there is a good reason why it is known as the leading exhibition for the international embedded community. It was larger again in 2019, with more space and more exhibitors. 1,117 (+9%) companies from around the world, occupying six exhibition halls, showed more than 30.895 embedded experts from 84 countries where the journey in the Internet of Things and the increasingly digitalised world is leading.

Program online – register now!

Conference Sponsors (as at 28.11.2019)

Organized by:
DESIGN & ELEKTRONIK
POWERED BY:
www.electronic-displays.de
CLASSES
embedded world Conference 2020

Class 3.1	The Robert Berger Class: Embedded Linux – a Crash Course
Class 3.2	Embedded Android Workshop
Class 3.3	Fast Track to OpenEmbedded and Yocto Project
Class 3.4	BeagleBoard-Class
Class 4.1	AES Cryptosystem Key Extraction on Standard µC and Countermeasures
Class 5.1	How to Build & Secure a RISC-V Embedded System
Class 5.2	Ultra Low Power Hands-on Workshop
Class 6.1	The Bruce Douglas Class 1: Agile for Embedded Systems
Class 6.2	The Bruce Douglas Class 2: Advanced Behavioral Modeling in UML and SysML
Class 6.3	The Greg Davis Class: Advanced C/C++ Coding and Debugging Techniques
Class 6.4	Safe Modern C++
Class 6.5	The Bruce Douglas Class 3: Effective Use Cases, User Stories and Scenarios
Class 10.1	Integrating Arm Cortex-M soft CPU IP into FPGAs
Class 10.2	FPGA-Design using C/C++ and High-Level Synthesis

Venue:
NürnbergMesse
Messezentrum NCC Ost
90471 Nuremberg, Germany

Details and Registration:
www.embedded-world.eu

Register online:
www.embedded-world.eu

or send this fax registration form to +49 (0) 89 / 255 56 – 0155

Please make sure that you are sending both pages!
Session 1.1	Internet of Things I – Trusted Computing
Session 1.2	Internet of Things II – Platforms
Session 1.3	Internet of Things III – Data Management, Edge, Fog, Cloud
Session 2.1	Connectivity I – Wired Communication
Session 2.2	Connectivity II – TSN
Session 2.3	Connectivity III/IV – Bluetooth III
Session 2.4	Connectivity V – Cellular Communication
Session 2.5	Connectivity VI – Wireless Communication
Session 2.6	Connectivity VII – LPWAN
Session 3.1	Embedded OS I/II – Basics I/II
Session 3.2	Embedded OS III/IV – Linux I/II
Session 3.3	Embedded OS VVI – Virtualization & Partitioning I/II
Session 4.1	Functional Safety & Security I – Standards
Session 4.2	Functional Safety & Security II – Functional Safety Architectures
Session 4.3	Functional Safety & Security III/IV – Hardware Security I/II
Session 4.5	Functional Safety & Security V – Hacking & Post Quantum Security
Session 4.6	Functional Safety & Security VI – Securing IoT
Session 4.7	Functional Safety & Security VII – Automotive
Session 5.1	Hardware I – Memory
Session 5.2	Hardware II – Power & Data
Session 5.3	Hardware III – Power Supply
Session 5.4	Hardware IV – Applications
Session 5.5	Hardware V – Architectures
Session 6.1	SW-Engineering I/II – Languages & MISRA I/II
Session 6.2	SW-Engineering III – Development Process I/II
Session 6.4	SW-Engineering IV/V – Testing & Debugging I/II
Session 6.7	SW-Engineering VI/II – Code Quality I/II
Session 7.1	Embedded Vision I/II
Session 8.1	Intelligent Systems I – AI Applications
Session 8.2	Intelligent Systems II – Autonomous Transportation
Session 8.3	Intelligent Systems III/IV – AI & ML Technologies I/II
Session 9.1	Embedded HMI & GUI I/II
Session 10.1	SoC I – Supply Chain
Session 10.2	SoC II – Analog, RF & Mixed Signal
Session 10.3	SoC III – Tools & Verification
Session 10.4	SoC IV/V – System Technology I/II

Terms and Conditions:
1. The attendance fee includes participation on the booked conference days, proceedings, refreshments and free admission to the embedded world 2020 Exhibition. If morning and afternoon blocks/classes are booked, lunch is also included for that day.

2. You will receive a confirmation of your conference registration along with your invoice.

3. Cancellations received in writing before or on February 04, 2020 will be subject to a service charge of EUR 50 for one-day registrations and EUR 100 for several-days registrations. For all cancellations received after February 05, 2020 the full conference fee remains payable. Substitutions within the same company are welcome at any time.

4. The organizers reserve the right to make changes in the program and/or speakers or to cancel sessions/classes if conditions beyond its control prevail. Please check www.embedded-world.eu for the latest conference information.

5. Students are granted a 50% reduction, student ID required. Please submit by fax to +49 (0) 89 / 255 56 - 0155 or by email to JHeger@weka-fachmedien.de.

6. Exhibitors will receive a discount of 25%. Please use the code: EWC20EXHIB

7. For registrations of five persons and more from one company, please contact our conference department for special rates.

8. On-site-registration: Please register in advance. For on-site-registration a surcharge of EUR 70 per attendee will apply.
Develop Your Software to the Highest Levels of Safety and Security

Develop and deploy your next-generation embedded systems with confidence to the highest levels of safety and security by leveraging Green Hills Software’s 37+ years of world-class design and certification expertise.

Call us on +49 228 4330 777 or book an embedded world meeting at www.ghs.com/go/ew-meet

Stand 4-325

Copyright © 2019 Green Hills Software. Green Hills and the Green Hills logo are registered trademarks of Green Hills Software. All other product names are trademarks of their respective holders.